PAGES

Friday 20 March 2009

GAS EXPLOSIONS



Flash Point and Flammable Limits
Flash points and flammable limits in percent by volume have been tabulated by the National Fire Protection Association (NFPA) (National Fire Protection Association, Fire Hazard Properties of Flammable Liquids, Gases, and Volatile Solids, NFPA 325, Quincy, Mass.). Pressure particularly affects flash point and the upper flammable limit (UFL); see later section entitled “Effect of Temperature, Pressure, and Oxygen.” Mists of high-flash-point liquids may be flammable; the lower flammable limit (LFL) of fine mists and accompanying vapor is about 48 g/m3 of air, basis 0°C and 1 atm (0.048 oz/ft3). For practical purposes, LFL is the same as lower explosive limit (LEL). (Ignitability limits depend upon the strength of the ignition source; the ignitability range for relatively weak ignition sources is less than the flammable range.) LFLs in percent by volume generally decrease as molecular weight increases.

Limiting Oxidant Concentration (LOC)
It is often prudent to base explosion prevention on inerting. The LOC is the concentration of oxidant—normally oxygen—below which a fuel-oxidant explosion cannot occur. (The LOC is also called MOC, the minimum oxygen for combustion.) With adequate depletion of oxygen, an explosion cannot occur whatever the concentration of fuel. Nevertheless, in these circumstances a fuel–air–inert gas mixture may become flammable if
sufficient air is added. Many LOCs are given in NFPA 69. In general, organic flammable gases or vapors will not propagate flame in mixtures of the organic, added nitrogen, and air below about 10.5 percent by volume O2 at 1 atm and near normal room temperature. Hydrogen (LOC = 5 percent) and some other inorganic gases have lower LOCs. For LOCs of 5 percent and greater, the O2 concentration should not exceed 60 percent of the LOC, but with continuous monitoring the O2 may be kept 2 percent below the LOC (NFPA 69, 1992). Neutronics, Inc., of Exton, Pennsylvania, supplies an inerting control system that has had wide application in many industries.Explosion prevention by inerting has several advantages over explosion protection techniques, such as explosion venting. For example, with successful inerting, fires or business interruptions cannot occur. Nevertheless, beware of the potential of asphyxiation with inerting; proper vessel entry procedures must be implemented and occasionally it may be prudent to monitor for oxygen in workplaces.

Explosion Pressure An explosion
Is the action of “going off ” with a loud noise under the influence of suddenly developed internal energy. Thus, an explosion is a result, not a cause. Deflagrations and detonations cause chemical explosions. A deflagration is a reaction that propagates to the unreacted material at a speed less than the speed of sound in the unreacted material. A detonation is a reaction that propagates to the unreacted material at a speed greater than the speed of sound in the unreacted material; it is accompanied by a shock wave and inordinately high pressure.

Explosion Protection
Where prevention of flammable mixtures may not be feasible, protection facilities must be installed; sometimes, too, backup explosion protection facilities are used in conjunction with inerting systems. Containment, suppression, or venting are used for protection against internal deflagrations in fuel-air mixtures.Although these methods may protect against deformation or rupture of a vessel, damage to internal appurtenances may still occur. Containment and suppression prevent the discharge of environmentally unacceptable materials to the atmosphere.

No comments:

Post a Comment